Excess molar enthalpies of binary and ternary mixtures containing aniline and 2-butanol

Isamu Nagata

Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, 40-20, Kodatsuno 2-chome, Kanazawa 920 (Japan)

(Received 5 April 1993; accepted 18 May 1993)

Abstract

Excess molar enthalpies for (aniline $+ 2$ -butanol) and (aniline $+ 2$ -butanol $+$ benzene) at 298.15 K, measured using an isothermal dilution calorimeter, are reported. The experimental binary and ternary results have been correlated by use of Redlich-Klister like polynomial equation and compared with those calculated from the **UNIQUAC** associatedsolution model having only binary parameters.

LIST OF SYMBOLS

0040-6031/94/\$07.00 C 1994 - Elsevier Science B.V. All rights reserved

INTRODUCTION

As part of investigations to measure excess molar enthalpies of mixtures including aniline and an alcohol $[1-5]$, this paper presents the excess molar enthalpies H_m^E for (aniline + 2-butanol) and (aniline + 2-butanol + benzene). The experimental results have been correlated with Redlich-Kister like polynomials and compared with those predicted from the **UNIQUAC** associated-solution model, which is based on the multiauto- and cross-association of aniline and the alcohol and the solvation of the resulting multimers and benzene, allowing for nonpolar interactions between the three components [6]. Excess molar enthalpies H_m^E at 298.15 K for the two component binaries of the ternary system studied here are available from the literature: aniline + benzene [7]; 2-butanol + benzene **[8].**

EXPERIMENTAL

Aniline (Nacalai Tesque. Inc., special grade) and 2-butanol (Wake Pure Chemical Industries Ltd., special grade) were used as received. Benzene (Kant0 Chemical Co., Inc., first grade) was subjected to recrystallization three times. The densities of these chemicals, measured with an Anton-Paar densimeter (DMA40), agreed well with published values [9]. The binary and ternary excess molar enthalpies H_m^E were measured with an isothermal dilution calorimeter at 298.15 K [10]. The experimental error of the measured H_m^E values were less than 0.5% of the measured values.

RESULTS

Table 1 gives the binary experimental H_m^E values of the aniline + 2butanol. The experimental H_m^E data for the three binary systems were correlated with eqn. (1).

$$
H_{m,i,j}^{E} = x_i x_j \sum_{n=1}^{m} A_n (x_i - x_j)^{n-1} / [1 - k(x_i - x_j)] \tag{1}
$$

TABLE 1

Excess molar enthalpies H_m^E in J mol⁻¹ for the aniline(1) + 2-butanol(2) system at 298.15 K

-1.4
-0.5
0.2
-0.8
1.4
-1.0
0.2

 $^{\circ}$ δ , Experimental value minus calculated value.

System $(1 + 2)$	А.	A_{2}	A_{τ}	A_{λ}	A.	A_{κ}		σ /J mol ⁻¹
Aniline + 2-butanol	6192.39	-866.68		$728.18 - 241.68$	454.53	-260.40		1.1
Aniline + benzene	3003.51	-721.57	447.94	-333.36				1.3
2-Butanol + benzene	6411.01	3974.37	-194.12	-366.27			-0.8557	

Parameters A, of eqns. (1) and (2) and standard deviations σ

Table 2 shows the parameters of eqn. (1) and the standard deviations σ . Figure 1 presents the experimental H_m^E values and those calculated from eqn. (1).

Table 3 presents the ternary experimental H_m^E values of the aniline(1) + 2-butanol(2) + benzene(3) system. Equation (2) was used to

Fig. 1. Experimental excess molar enthalpies for aniline + 2-butanol at 298.15 K: \bullet , this work; -, calculated from eqn. (1) or the *UNIQUAC* associated-solution model.

TABLE 2

TABLE 3

Experimental ternary excess molar enthalpies H_m^E in Jmol⁻¹ at 298.15 K for the aniline(1) + 2-butanol(2) + benzene(3) system obtained by mixing pure benzene with $[x_1]$ aniline + $(1 - x_i')$ 2-butanol]

x_1	x_2	H_m^{E}	δ ^a	x_1	x_2	$H_m^{\rm E}$	δ a	x_{1}	x_2	$H_m^{\rm E}$	$\delta^{\,4}$
$x'_i = 0.2496$				$x'_1 = 0.5002$				$x'_1 = 0.7510$			
0.2357	0.7083	1412.3	7.1	0.4665	0.4662	1607.6	-19.4	0.7235	0.2399	1156.7	1.7
0.2210	0.6640	1528.3	9.8	0.4355	0.4352	1669.3	-18.7	0.6817	0.2260	1222.9	1.2
0.2018	0.6063	1651.7	12.6	0.3975	0.3972	1722.9	-15.4	0.6338	0.2101	1286.4	2.2
0.1799	0.5406	1746.8	7.4	0.3591	0.3588	1754.1	-11.5	0.5704	0,1891	1350.4	7.6
0.1588	0.4762	1799.1	0.9	0.3179	0.3177	1759.3	-10.7	0.5066	0.1679	1388.0	11.0
0.1376	0.4135	1805.5	-6.5	0.2760	0.2758	1729.2	-13.2	0.4391	0.1456	1395.9	12.2
0.1216	0.3655	1780.5	-8.8	0.2504	0.2502	1695.0	-11.8	0.3837	0.1272	1375.8	13.9
0.1170	0.3515	1767.2	-9.6	0.2365	0.2363	1670.3	-10.4	0.3420	0.1134	1342.3	15.3
0.1059	0.3182	1726.3	-10.3	0.2233	0.2231	1640.1	-11.3	0.3250	0.1077	1323.7	15.8
0.0941	0.2827	1667.4	$-9,6$	0.2043	0.2042	1592.3	-9.9	0.2900	0.0962	1276.4	16.8
0.0825	0.2480	1592.3	-9.4	0.1800	0.1799	1518.2	-7.5	0.2604	0.0863	1225.9	17.2
0.0712	0.2139	1500.8	-9.5	0.1599	0.1598	1444.4	-6.3	0.2355	0.0781	1174.8	16.2
0.0634	0.1904	1425.8	-10.1	0.1380	0.1379	1349.7	-6.1	0.2064	0.0684	1104.4	14.3
0.0558	0.1676	1342.9	-10.8	0.1229	0.1228	1283.7	2.6	0.1841	0.0610	1041.7	12.1
0.0493	0.1482	1262.4	-12.4	0.0998	0.0997	1149.8	1,7	0.1582	0.0525	958.5	9.8
0.0427	0.1282	1170.0	-12.4	0.0856	0.0855	1053.7	1.2	0.1340	0.0444	868.5	7.6

 a^a δ . Experimental value minus calculated value.

correlate the ternary H_m^E results.

$$
H_{m,123}^{\text{E}} = H_{m,12}^{\text{E}} + H_{m,13}^{\text{E}} + H_{m,23}^{\text{E}} + x_1 x_2 x_3 \Delta
$$
 (2)
where

$$
\Delta/RT = \sum_{n=1}^{m} B_n (1 - 2x_3)^{n-1}
$$
 (3)

The parameters of eqn. (3) were calculated using a unweighted Ieast squares method: $B_1 = 0.7322$, $B_2 = -1.0751$, $B_3 = 0.2275$, $B_4 = -0.8566$, \overline{B}_5 = 4.6576, and B_6 = -3.7451; and the absolute arithmetic-mean deviation AAD = 9.9 J mol⁻¹, the standard deviation $\sigma = 11.7$ J mol⁻¹, and the absolute relative-mean deviation is 0.7%. Figure 2 plots contours of the ternary $H_{m,123}^E$, calculated from eqns. (2) and (3).

DATA ANALYSIS

The previous papers [l-S] have shown that the **UNIQUAC** associatedsolution model is useful in analyzing the excess molar enthalpies of binary and ternary mixtures including anihne and an alcohol, so the model will be used in this paper. According to the model assumptions aniline (A) and 2-butanol (B) self-associate to form open homo-chains, A_i and B_i , and these pure open chain molecules cross-associate multifariously to yield open hetero-chains $(A_iB_j)_k$, $A_i(B_iA_k)_l$, $(B_iA_j)_k$ and $B_i(A_iB_k)_l$, and the resulting open homo- and hetero-chains and benzene (C) solvate to produce additional complexes: A_iC, B_iC, $(A_iB_j)_kC$, $A_i(B_iA_k)_iC$, $(B_iA_i)_kC$ and $B_i(A_iB_k)_iC$, where the subindices i, j, k and l range from one to infinity.

Fig. 2. Curves of constant excess molar enthalpies for aniline(1) + 2-butanol(2) + benzene(3) system at 298.15 K; $\frac{1}{2}$, calculated from eqns. (2) and (3).

The equilibrium constants for the open homo- and hetero-chain formation are assumed to be independent of the degrees of association and solvation and are defined as follows:

$$
K_{A} = \frac{\phi_{A_{i}+1}}{\phi_{Ai}\phi_{A1}}\frac{i}{i+1}
$$
 for A_i + A₁ = A_{i+1}
\n= K_A^{*} exp $\left[-\frac{h_{A}}{R}\left(\frac{1}{T} - \frac{1}{T^{*}}\right)\right]$
\n
$$
K_{B} = \frac{\phi_{B_{i}+1}}{\phi_{B_{i}}\phi_{B1}}\frac{i}{i+1}
$$
 for B_i + B₁ = B_{i+1}
\n= K_B^{*} exp $\left[-\frac{h_{B}}{R}\left(\frac{1}{T} - \frac{1}{T^{*}}\right)\right]$
\n
$$
K_{AB} = \frac{\phi_{A_{i}B_{j}A k B_{i}}}{\phi_{A_{i}B_{j}A k} \phi_{B_{i}}r_{A_{i}B_{j}A k B_{i}}r_{A}r_{B}}
$$
 for A_iB_jA_k + B_i = A_iB_jA_kB_i
\n= K_{AB}^{*} exp $\left[-\frac{h_{AB}}{R}\left(\frac{1}{T} - \frac{1}{T^{*}}\right)\right]$
\n
$$
K_{AC} = \frac{\phi_{A_{i}C}}{\frac{i}{R}}\frac{i}{k+1}r_{A_{i}B_{j}A k B_{i}}r_{A_{i}B_{j}A k B_{i}}r_{A_{i}B_{j}A k B_{i}}r_{A_{i}B_{i}A k B_{i}}r_{A_{i}B_{i}A k B_{i}}r_{A_{i}B_{i}A k B_{i}}r_{A_{i}B_{i}A k B_{i}}r_{A_{i}B_{i}A k B_{i}A k B_{i}}
$$
 (6)

$$
K_{AC} = \frac{\overline{\phi_{A}} \phi_C}{\overline{\phi_{A}} \phi_C} \frac{\overline{r_A} + \overline{r_C}}{\overline{r_A} + \overline{r_C}}
$$
\n
$$
= K_{AC}^* \exp\left[-\frac{h_{AC}}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)\right]
$$
\n
$$
K_{BC} = \frac{\phi_{BiC}}{\phi_{Bi} \phi_{C1}} \frac{i}{\overline{r_B} + \overline{r_C}}
$$
\nfor\n
$$
= K_{BC}^* \exp\left[-\frac{h_{BC}}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)\right]
$$
\nfor

for $B_1 + C_1 = B_1C$

 (8)

 (7)

The ternary H_m^E is given by the sum of chemical and physical contributions

$$
H_{\rm m}^{\rm E} = H_{\rm n,chem}^{\rm E} + H_{\rm m,phys}^{\rm E}
$$

\n
$$
= h_{A}x_{A}\left(\frac{\bar{U}_{A}\phi_{A1}}{\phi_{A}} - \bar{U}_{A}^{a}\phi_{A1}^{a}\right) + h_{B}x_{B}\left(\frac{\bar{U}_{B}\phi_{B1}}{\phi_{B}} - \bar{U}_{B}^{a}\phi_{B1}^{a}\right)
$$

\n+ $(h_{A}\bar{U}_{A} + h_{AC}U_{A})\frac{r_{A}K_{AC}\phi_{C1}x_{A}\phi_{A1}}{\phi_{A}} + (h_{B}\bar{U}_{B} + h_{BC}U_{B})\frac{r_{B}K_{BC}\phi_{C1}x_{B}\phi_{B1}}{\phi_{B}}$
\n+ $\left(h_{A}\left(\frac{\bar{U}_{A}x_{A}\phi_{A1}}{\phi_{A}}(2 - r_{A}r_{B}K_{AB}\phi_{A1}\phi_{B1}U_{A}U_{B})(1 + r_{A}K_{AC}\phi_{C1})\right) + \frac{\bar{U}_{A}U_{B}r_{B}\phi_{B1}}{U_{A}\phi_{B}}(1 + r_{A}K_{AC}\phi_{C1})\right]$
\n+ $\frac{\bar{U}_{A}U_{B}x_{B}\phi_{B1}}{U_{A}\phi_{B}}(1 + r_{B}K_{BC}\phi_{C1})$
\n+ $h_{B}\left(\frac{\bar{U}_{B}x_{B}\phi_{B1}}{\phi_{B}}(2 - r_{A}r_{B}K_{AB}\phi_{A1}\phi_{B1}U_{A}U_{B})(1 + r_{B}K_{BC}\phi_{C1})\right)$
\n+ $\frac{\bar{U}_{B}U_{B}x_{B}\phi_{B1}}{U_{B}\phi_{B}}(2 - r_{A}r_{B}K_{AB}^{2}\phi_{A1}\phi_{B1}U_{A}U_{B})(1 + r_{B}K_{BC}\phi_{C1})$
\n+ $\frac{\bar{U}_{B}V_{A}x_{B}\phi_{A1}}{U_{B}\phi_{A}}(1 + r_{A}K_{AC}\phi_{C1}) + \frac{x_{B}}{r_{A}\phi_{B}}(1 + r_{B}K_{BC}\phi_{C1})$
\n+ $\frac{\bar{U}_{B}V_{A}x_{B}\phi_{A1}}{U_{B}\phi_{$

where the segment fraction ϕ_1 , the surface fraction θ_1 , the symbols \bar{U}_1 and U_1 and the binary parameter τ_{II} are expressed by

$$
\phi_1 = x_1 r_1 \bigg/ \sum_j x_j r_j \tag{10}
$$

$$
\theta_1 = x_1 q_1 / \sum_j x_1 q_1 \tag{11}
$$

$$
\bar{U}_1 = K_1 \phi_{11} / (1 - K_1 \phi_{11})^2
$$
\n(12)

$$
U_{\rm I} = 1/(1 - K_{\rm I} \phi_{\rm II}) \tag{13}
$$

$$
\tau_{\rm II} = \exp(-a_{\rm II}/T) \tag{14}
$$

The energy parameter a_{11} is assumed to change with temperature linearly.

$$
a_{\rm H} = C_{\rm H} + D_{\rm H} (T - 273.15) \tag{15}
$$

The values of ϕ_{11}^0 and \bar{U}_1^0 at the pure liquid state are expressed by

$$
\phi_{11}^0 = [1 + 2K_1 - (1 + 4K_1)^{0.5}]/2K_1^2
$$
\n(16)

$$
\bar{U}_1^0 = K_1 \phi_{11}^0 / (1 - K_1 \phi_{11}^0)^2
$$
\n(17)

The monomeric segment fractions of components, ϕ_{A1} , ϕ_{B1} and ϕ_{C1} , are solved simultaneously from eqns. (18)-(20).

$$
\phi_{A} = (1 + r_{A}K_{AC}\phi_{C1})\bar{S}_{A} + \frac{r_{A}K_{AB}\bar{S}_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B})^{2}} \times \{2 + r_{B}K_{AB}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}K_{AB}S_{B} + \phi_{C1}[(r_{A}K_{AC} + r_{B}K_{BC}) + r_{A}r_{B}K_{AB}K_{AC}S_{A} \times (2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}r_{B}K_{AB}K_{BC}S_{B}]\} \times (2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}r_{B}K_{AB}S_{AB}S_{B}S_{B}^{2}
$$
\n
$$
\times \{2 + r_{A}K_{AB}S_{B}(2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{B}K_{AB}S_{A}S_{B} + \phi_{C1}[(r_{A}K_{AC} + r_{B}K_{BC}) + r_{A}r_{B}K_{AB}K_{BC}S_{B} \times (2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{B}r_{A}K_{AB}K_{BC}S_{B}] \times (2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}r_{B}K_{AB}K_{AC}S_{A}]\} \times \phi_{C} = \phi_{C1}\{1 + r_{C}K_{AC}S_{A} + r_{C}K_{BC}S_{B} + \frac{r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B})}\} \times \left[\frac{K_{AC}}{r_{B}K_{AB}} + \frac{K_{BC}}{K_{AB}} + K_{AC}S_{A} + K_{BC}S_{B}]\right]
$$
\n(20)

TABLE 4

Association parameters and molecular structural constants for pure components

where the sums \bar{S}_I and S_I are defined as

$$
S_1 = \phi_{11}/(1 - K_1 \phi_{11})^2
$$
 (21)

$$
S_{\rm I} = \phi_{11}/(1 - K_1 \phi_{11})
$$
 (22)

Table 4 gives the association parameters, K_A and h_A , for aniline [11] and 2-butanol $[12,13]$ and the pure-component molecular structural constants, r and q , calculated in accordance with the method of Vera et al. [14]. Table 5 gives the solvation parameters, K_{AB} and h_{AB} , for binary mixtures [11, 15]. All h_A and h_{AB} values were assumed to be temperature-independent.

Table 6 shows the results of fitting the **UNIQUAC** associated-solution model to the binary experimental H_m^E values. The parameters C_{II} and D_{II} of eqn. (15) were obtained by minimizing the sum of the squares of deviations between the experimental and calculated H_m^E for all data points by means of the simplex method of Nelder and Mead [16].

The absolute arithmetic mean deviation (AAD), root-mean-square

TABLE 5

Solvation parameters for binary mixtures

System $(A + B)$	K_{AB} at 323 K	$-hAB/kJ$ mol ⁻¹		
Aniline $+2$ -butanol	16.0(298.15 K)	17.5		
Aniline + benzene	1.0	10.8		
1 -Propanol + benzene	2.5	8.3		

TABLE 6

The results of fitting the **UNIQUAC associated-solution model to binary excess enthalpy data**

System $(A + B)$	Number of data points	Parameters	$AAD^a/$ $J \text{ mol}^{-1}$			
			C_{BA}/K C_{AB}/K	D_{BA}	D_{AB}	
Aniline $+ 2$ -butanol	15	364.1	322.0	0.3196	0.8742	-1.0
$Aniline + benzene$	14	-188.1	519.5	-1.0731	-2.1112	4.5
2 -Butanol + benzene	18	1914.8	335.3	-0.6689	0.5887	8.2

a AAD, absolute arithmetic mean deviation.

deviation (RMSD) and absolute relative deviation (ARD) between the forty-nine ternary experimental H_m^E and predicted values from the *UNIQUAC* associated-solution model are $AAD = 24.5 J mol^{-1}$, $RMSD = 32.1 J mol^{-1}$, and $ARD = 1.8\%$, showing that agreement is acceptable.

REFERENCES

- 1 I. Nagata and M. Sano, Fluid Phase Equilibria, 72 (1992) 147-612.
- 2 I. Nagata and M. Sano, Thermochim. Acta, 200 (1992) 475-488.
- 3 I. Nagata, Thermochim. Acta, 208 (1992) 73-82.
- 4 I. Nagata and K. Miyazaki, J. Chem. Thermodyn., 24 (1992) 1175-1180.
- 5 I. Nagata, J. Chem. Thermodyn., 25(11) (1993) 1281-1285.
- 6 I. Nagata, K. Tamura and K. Gotoh, Thermochim. Acta, 104 (1986) 179-202.
- 7 I. Nagata and K. Tamura. J. Chem. Thermodyn., 24 (1992) 613-617.
- 8 I. Nagata and K. Tamura, Fluid Phase Equilibra, 41 (1988) 127-139.
- 9 J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, 4th edn., Wiley-Interscience, New York, 1986, pp. 135, 200, 611.
- 10 I. Nagata and K. Kazuma, J. Chem. Eng. Data, 22 (1977) 79-84.
- 11 I. Nagata and K. Ohtsubo, Thermochim. Acta, 97 (1986) 37-49.
- 12 V. Brandani, Fluid Phase Equilibria, 12 (1983) 87-104.
- 13 R.H. Stokes and C. Burfitt, J. Chem. Thermodyn., 5 (1973) 623-631.
- 14 J.H. Vera, S.G. Sayegh and G.A. Ratcliff, Fluid Phase Equilibria, 1 (1977) 113-135.
- 15 I. Nagata, Thermochim. Acta, 140 (1989) 355-364.
- 16 J.A. Nelder and R. Mead, Comput. J., 7 (1965) 308-313.